
16 APRILE 2021 VIRTUAL EVENT

RICCARDO ZAMANA

REDIS ON AZURE
A NEW RISING

STAR WITH V.6?

@ZAMANARICCARDO

#GLOBALAZURE

SPONSOR

il partner tecnologico per chi ha idee ambiziose. Innovazione pratica da 15 anni.

empower every person and every organization on the planet to achieve more.

https://www.microsoft.com/it-it/
https://www.manageddesigns.it/

16 APRILE 2021 VIRTUAL EVENT

aka.ms/global-
azure/30D2L

blog.globalazure.net/Swag

https://aka.ms/global-azure/30D2L
https://blog.globalazure.net/Swag

#GLOBALAZURE

AZURE CACHE REDIS ON AZURE: A NEW RISING STAR WITH V.6?

AGENDA

• REDIS FUNDAMENTALS (3m)

• REDIS ON AZURE (7m)

• REDIS ANATOMY (15m)

• REDIS ADVANCED (8m)

• DEEP DIVE ON NEW AZURE MODULES (7m)

16 APRILE 2021 VIRTUAL EVENT

#GLOBALAZURE

REDIS
FUNDAMENTALS

#GLOBALAZURE

WHAT IS REDIS

• Redis provides data structures such as strings, hashes, lists, sets, sorted sets with range
queries, bitmaps, hyperloglogs, geospatial indexes, and streams. But can be expanded too.

REMOTE DICTIONARY SERVICE

Redis is an
open source

(BSD licensed),
in-memory

data structure
store

K, V cache

Message broker

database

#GLOBALAZURE

KEY FEATURES

DEVELOPER POV

• TRANSACTIONS

• PIPELINING

• PUB/SUB

• LUA SCRIPTING

• MANAGED TTL EVICTION OF KEYS (LRU, ECC)

• <KEY, DS> ... NOT <KEY,V>

• ONE CONFIG FILE

• DIFFERENT LEVELS OF ON-DISK PERSISTENCE

• BUILT-IN REPLICATION

• AUTOMATIC PARTITIONING WITH REDIS CLUSTER

• AUTOMATIC FAILOVER

• HIGH AVAILABILITY VIA REDIS SENTINEL

ARCHITECT POV

#GLOBALAZURE

IT’S VERY FAST
• It works with an in-memory dataset.

• You can persist your data either

• by periodically dumping the dataset to
disk

• by appending each command to a disk-
based log.

In Memory, so It's Faster
> 1.5 million ops/second

<1 ms latency

In Memory, so It's Faster
> 80k ops/second

With a B2S on Azure

It also supports asynchronous replication with:
very fast non-blocking first synchronization

auto-reconnection with partial resynchronization on net split

#GLOBALAZURE

REDIS IS USEFUL FOR

• Realtime analytics

• High speed data ingest

• High Speed transactions

• Message queues

• Session Storage

• In-app social functionality

• Application job management

• Machine learning

• Search

... and caching.

Transactional (OLTP) use cases:
• Financial transactions
• Pricing Management
• Advertising bids
• User profile Managemnet
• Location-based processing
• User session management

ANALYTICS (OLAP) use cases:
• Counting
• Leaderboards
• Page ranking
• Recomendation engine
• Time-series Analysis
• Session Analysis

#GLOBALAZURE

REDIS MODULES

REDIS is Modular.

You can update commands and datatypes.

Redis to cover most

popular use cases in a

wide variety of industries.

Modules

• are add-ons to Redis that extend Redis

• are Redis v4.0+ compatible

• seamlessly plug into ​Redis

• can be created by anyone

Two set of modules

• modules under an OSI approved license

• modules that are under some proprietary license

• Develop your own Module:

• https://github.com/RedisLabs/RedisModulesSDK

• YOU can build your own modules.

• It can embed compute complexity.

https://github.com/RedisLabs/RedisModulesSDK

#GLOBALAZURE

MODERN DATA MODELS
• RediSearch (as Elasticsearch)

• redisearch.io

• RedisTimeSeries (as Influx)

• redistimeseries.io

• RedisJson (come MongoDB)

• rejson.io

• RedisGraph (come Neo4j)

• redisgraph.io

• RedisBloom (probabilistic filter)

• rebloom.io

• RedisAI (Execute tensor or pytorch)

• redisai.io

#GLOBALAZURE

I DIDN’T LIKE IT BEFORE BECAUSE..

YESTERDAY

• Many OSS fragile GUI

• Windows version was not
updated

• Management (HA, Backups,
etc) was not well documented

• It was «a cache» for me, not
the fulcrum neither the end of
«data’s story».

..AND IT RUNS ON IOT EDGE
with 5Mb LOAD ☺

NOW

• Redis is WSL Compatible

• Official client, rather then redis
cli: Redis Insight

• Redis is a certifieble
knowledge: Redis University

• … and YES, its a cache ALSO.

#GLOBALAZURE

I WAS A BIT CONFUSED BECAUSE..

YESTERDAY

• Azure version was 4

• Windows version was 5

• Version 6 was STABLE on REDIS.IO

Sum(IoT => Cost(Services(i,n))) > Cost(Redis.Premium)

My conclusion, in many IoT contexts is:

TODAY

• WSL is my friend

• 6.0.3 is available on Azure PaaS

• AKS and ACI can do all the rest

16 APRILE 2021 VIRTUAL EVENT

#GLOBALAZURE

REDIS
ON AZURE

#GLOBALAZURE

WHAT IS AZURE CACHE FOR REDIS

• Managed VM based deployment

• Offers both the Redis open-source
(OSS Redis) and a commercial product
from Redis Labs (Redis Enterprise) as a
managed service

• It provides secure and dedicated Redis
server instances and full Redis API
compatibility

• In case of Redis Labs managed service,
there are two fees

From Zero to Hero !!!!

#GLOBALAZURE

TIERS AND MONTLY COSTS

Level Redis Version SLA Deployment Notes Starts from

Basic OSS No SLA 1 VM 13 €

Standard OSS 99.9% 2 VM replicated 33 €

Premium OSS 99.9% Data persistence, net security,
Passive geo Replica, up to 10 shard

Cluster

340 €

Enterprise RedisLabs Up to 99.999% HA, Redis Modules, Active Geo
replica

820 €

Ent. flash RedisLabs Up to 99.999% Large Datasets, Cache on Disk 6.700 €

My 2 cents:
• From Standard to Premium … there is AKS
• Enterprise Flash: is not applicable to any market landscape

#GLOBALAZURE

WHAT IS ENTERPRISE OFFERING
• Active Geo-Replication (in Preview)

• Higher availability—architected for 99.99% with zone redundancy, and 99.999% with active geo-replication.

• Redis on Flash, enabling ten times larger cache sizes on NVMe flash storage.

• Integrated billing and the ability to use Azure spend commitment.

• Supported Redis Enterprise Modules

• Redis Search

• Redis Bloom

• Redis TimeSeries

• Scaling

• Datasets up to 13TB

• Up to 2,000,000 concurrent client connections

• More than 1,000,000 ops/sec

#GLOBALAZURE

INCREASED AVAILABILITY

• 99.9% => Monthly: 43m 49s

• 99.99% => Monthly: 4m 22s

• 99.999% => Monthly: 26s

When do you need .999?

Retail: world Inventory
Finance: Pricing systems

REMEMBER THE NUMBERS

#GLOBALAZURE

REDIS MODULES + REDIS 6.0

#GLOBALAZURE

PERSISTENCE MODES

• AOF (append-only file) data persistence:
logs every write operation or accumulates
one second of write operations with
minimal to non-effect on Redis
performance.

• Snapshot (RDB) data persistence:
performs point-in-time snapshots of your
dataset at specified intervals that can be
used to rebuild your dataset if needed.

#GLOBALAZURE

AZURE BILLING

• The purchasing process is made seamless
through integral billing.

• Customer with MACC agreement, will find
Redis Enterprise spend in their Azure
commitment

#GLOBALAZURE

PERFORMANCE - NETWORK

• Network bandwidth and latency usually have a direct
impact on the performance.

• Use the ping program to quickly check the latency
between the client and server hosts

• Estimate the throughput in Gbit/s and compare it to the
theoretical bandwidth of the network.

• Redis throughput is limited by the network well before
being limited by the CPU.

Bandwidth and Network latency is the KEY. MUST BE CALCULATED!!!

#GLOBALAZURE

PERFORMANCE - CPU AND RAM

• CPU is another very important factor. Being single-threaded,
Redis favors fast CPUs with large caches and not many
cores.

• Speed of RAM and memory bandwidth seem less critical for
global performance especially for small objects. For large
objects (>10 KB), it may become noticeable though.

#GLOBALAZURE

PERFORMANCE – SERVICE TIER

• Different key size: Number may change if you use different KEY sizes or
VALUE sizes

• Throughput: Throughput for the caches that are the same size is higher
in the Premium tier as compared to the Standard tier

• Shards: With Redis clustering, throughput increases linearly as you
increase the number of shards (nodes) in the cluster

• Service tier: Throughput for bigger key sizes is higher in the Premium
tier as compared to the Standard Tier

#GLOBALAZURE

MY 2 CENTS

1. Start small (but COMPLETE) using the Magic «K»

2. Evolve to Enterprise (with balanced offering)

3. Scale Globally without Headache (with AAS offering)

CLOUD SPENDING DURING DEV / TEST / PROD

#GLOBALAZURE

THREE SIMPLE RECIPES TO START

• ONLY BUILT IN DATA STRUCTURE => Azure Cache for Redis

• ALL MODULE + FIXED SIZE: ACI Redis node (with persistence)

• ALL MODULES + DYNAMIC SIZE: AKS Redis cluster

#GLOBALAZURE

AZURE CACHE REDIS

• Version 6 PREVIEW

• ACLs bring the concept of “users” to Redis

• encrypt traffic over SSL

• while it retains a core single-threaded data-access
interface, I/O is now threaded

• client-side caching layer

#GLOBALAZURE

REDIS BY ACI

• Persistence with
FileShare

• Docker based run

az container create \
--resource-group myRG \
--name redisinstance \
--image redislabs/redismod \
--dns-name-label myFQDN \
--ports 6379 \
--azure-file-volume-account-name *** \
--azure-file-volume-account-key *** \
--azure-file-volume-share-name *** \
--azure-file-volume-mount-path /

#GLOBALAZURE

REDIS BY AKS

az login

az account set --subscription **************

az aks get-credentials --resource-group **RG** --name **N**

az aks proxy --resource-group **RG** --name **N**

az aks browse --resource-group **RG** --name **N**

az aks enable-addons --addons kube-dashboard --resource-group **RG** --name **N**

kubectl delete clusterrolebinding kubernetes-dashboard

kubectl create clusterrolebinding kubernetes-dashboard --clusterrole=cluster-admin --serviceaccount=kube-system:kubernetes-dashboard --user=clusterUser

az aks browse --resource-group **RG** --name **N**

#GLOBALAZURE

REDIS BY AKS

apiVersion: v1

kind: Service

metadata:

name: primary

spec:

type: LoadBalancer

ports:

- protocol: TCP

port: 6379

targetPort: 6379

name: redis

selector:

name: redis-primary

apiVersion: v1

kind: Service

metadata:

name: replica

spec:

type: LoadBalancer

ports:

- protocol: TCP

port: 6379

targetPort: 6379

name: redis

selector:

name: redis-replica

apiVersion: apps/v1

kind: Deployment

metadata:

name: primary-deployment

labels:

name: redis-primary

spec:

replicas: 1

selector:

matchLabels:

name: redis-primary

template:

metadata:

labels:

name: redis-primary

spec:

subdomain: primary

containers:

- name: redis

image: redis:3.2.0-alpine

command:

- "redis-server"

args:

- "--protected-mode"

- "no"

ports:

- containerPort: 6379

apiVersion: apps/v1

kind: Deployment

metadata:

name: replica-deployment

labels:

name: redis-replica

spec:

replicas: 2

selector:

matchLabels:

name: redis-replica

template:

metadata:

labels:

name: redis-replica

spec:

subdomain: replica

containers:

- name: redis

image: redis:3.2.0-alpine

command:

- "redis-server"

args:

- "--slaveof"

- "primary.default.svc.cluster.local"

- "6379"

- "--protected-mode"

- "no"

ports:

- containerPort: 6379

Primary Service Replica Service Replica DeploymentPrimary Deployment

AND CHECK!
rscli -h X.X.X.X -p 6379 info replication

REPLICATED CLUSTER IN 4 SIMPLE STEPS !!

16 APRILE 2021 VIRTUAL EVENT

#GLOBALAZURE

REDIS
ANATOMY

#GLOBALAZURE

HOW REDIS MUST BE USED

• Keys are strings, and must be unique within a redis instance.

• By convention, redis keys are separated by colon (:)

• “users:123” is a key representing a user with id = 123

• “users:123:favourites” is a key representing the favourites of user
with id = 123 Keys always have an associated value.

• If the value is empty or null, redis automatically deletes the key.

#GLOBALAZURE

THREE SIMPLE OPERATIONS

• Expiry: You can set an expiry on any key, regardless of the type. Once a key
expires, Redis automatically deletes it from memory.

• Existence: You can check if a key exists in memory

• Type: You can check the type of a key - i.e. whether it’s a string, set or list etc.

YOU MUST MANAGE MEMORY

#GLOBALAZURE

DATA STRUCTURES

Redis has 5 basic data types:

Strings , Hashes , Lists , Sets , Sorted Sets

In addition, it the following advanced
data structures:

• Bitmaps: built on string

• Bitfield: built on string

• HyperLogLog: built on string

• Geospatial: built on sortedset

DEFAULT DATA STRUCTURE

Pubsub

#GLOBALAZURE

DATA TYPES: HASH

• Fields in hash can be incremented
atomically (counters)

Sample usage:

• Saving properties of a B.O. (plain table)

• Saving Sessions

• Maintain Many-to-many mappings

UP TO 2^32 KEY VALUE PAIER IN EACH HASH

Hashes can store key=value pairs.

Hashes cannot be further nested, the value must be a binary
string.

If you have a persisted class with Dictionary/HashMaps, you
would typically store that as a Hash in Redis

#GLOBALAZURE

DATA TYPES: HASH

• User Profiles: Many web applications use Redis Hashes for their user profiles, as they
can use a single hash for all the user fields, such as name, surname, email, password,
etc.

• User Posts: Social platforms like Instagram leverage Redis Hashes to map all the
archived user photos or posts back to a single user. The hashing mechanism allows
them to look up and return values very quickly, fit the data in memory, and leverage
data persistence in the event one of their servers dies.

• Storing Multi-Tenant Metrics: Multi-tenant applications can leverage Redis hashes to
record and store their product and sales metrics in a way that guarantees solid
separation between each tenant, as hashes can be encoded efficiently in a very small
memory space.

EXAMPLES

#GLOBALAZURE

DATA TYPES: LIST
UP TO 2^32 ELEMENTS IN EACH KEY (4 BILLION)

•Internally mantained as Linked Lists safe

•O(N): extremely fast near both ends

•Ideal for:
•Queues
•Stacks
•Top N (Recent News)

•Sample Uses:
• Social network Timeline (LPUSH to add, LRANGE to retrieve recent items)
• LPUSH+LTRIM to keep top N
• User action / error logging
• RPOPLPUSH using same source/dest to rotate items in a ring

#GLOBALAZURE

DATA TYPES: LIST

• Social Networking Sites: Social platforms like Twitter use Redis Lists to populate their
timelines or homepage feeds, and can customize the top of their feeds with trending
tweets or stories.

• RSS Feeds: Create news feeds from custom sources where you can pull the latest updates
and allow interested followers to subscribe to your RSS feed.

• Leaderboards: Forums like Reddit and other voting platforms leverage Redis Lists to add
articles to the leaderboard and sort by most voted entries.

EXAMPLES

#GLOBALAZURE

DATA TYPES: SET

• Mantains unique set of items (unordered)

• Support intersection/union

• Quickly Check if a member exists

UP TO 2^32 ELEMENTS IN EACH KEY (4 BILLION)

Sample use:
• Tagging
• Extract random members

Ideal for:
• Storing relations (K=UserID, V = set of Followers)

#GLOBALAZURE

DATA TYPES: SET

• Analyzing Ecommerce Sales: Many online stores use Redis Sets to analyze customer
behavior, such as searches or purchases for a specific product category or subcategory.

• IP Address Tracking: Redis Sets are a great tool for developers who want to analyze all of
the IP addresses that visited a specific website page or blog post, and to be able to
ignore all of the duplicates for unique visitors with their SADD function.

EXAMPLES

#GLOBALAZURE

DATA TYPES: STRING
UP TO 2^32 BITS (512 MB) IN EACH KEY,

They are the simplest and most complicated
data structure.

First, strings are binary.
Which means you can store text like “hello world”, or
numbers like 42, or a floating point number like 3.14

Ideal for:
• Plain strings (page/post cache)
• Full JSON Objects
• Raw bits/flags (realtime metrics- daily active users)
• Binary file content (binary file manipulation)

Sample Uses:
• Lock (SET resourcename anyvalue NX EX max-lock-time)
• General cache
• Picture masking (BITOP)
• Stats for A/B testing

#GLOBALAZURE

DATA TYPES: STRING

• Session Cache: Many websites leverage Redis Strings to create a session cache to speed up
their website experience by caching HTML fragments or pages. Since data is stored
temporarily in the RAM, this attribute makes Redis a perfect choice as a session cache. It is
able to temporarily store user-specific data, for instance, items stored in a shopping cart in
an online store, which is crucial in that your users do not lose their data in the event they
log out or lose connection.

• Usage & Metered Billing: A lesser known use case for Redis Strings is the real-time
metering for consumption-based pricing models. This allows SaaS platforms that bill based
on actual usage to meter their customers activity, such as in the telecommunications
industry where they may charge for text messages or minutes.

EXAMPLES

#GLOBALAZURE

DATA TYPES: SORTED SET

• Mantains unique set of items (ordered)

• Order is defined by SCORE

• Same features of SET

Sample use:

• Mantain a leader board

• Any TOP something

• Index other REDIS data (member is USERID, score
is AGE. Query USER with given age Range)

UP TO 2^32 ELEMENTS IN EACH KEY (4 BILLION)

Sorted Set = Hash + List
• Hash because you can store a “score” with every element
• List because you can retrieve a subset of elements in a sorted order

#GLOBALAZURE

DATA TYPES: SORTED SET

• Q&A Platforms: Many Q&A platforms like Stack Overflow and Quora use Redis Sorted Sets to
rank the highest voted answers for each proposed question to ensure the best quality
content is listed at the top of the page.

• Gaming App Scoreboards: Online gaming apps leverage Redis Sorted Sets to maintain their
high score lists, as scores can be repeated, but the strings which contain the unique user
details cannot.

• Task Scheduling Service: Redis Sorted Sets are a great tool for a task scheduling service, as
you can associate a score to rank the priority of a task in your queue. For any task that does
not have a score noted, you can use the WEIGHTS option to a default of 1.

• Geo Hashing: The Redis geo indexing API uses a Sorted Set for the Geo Hash technique which
allows you to index locations based on latitude and longitude, turning multi dimensional
data into linear data.

EXAMPLES

#GLOBALAZURE

REDIS STREAMS

• Available with Redis 5.0+

• BUILT TO SOLVE STREAMING PROBLEMS

• Sorted set: memory hungry, client’s can’t block
awaiting new records

• List: linear time to scan, no fan-out

• Pub/Sub: no history, no windowed aggregation

A STEP AHEAD IN «IN-ORDER INGESTION»

GOAL: handle asynchronous communication between producers and consumers.

#GLOBALAZURE

REDIS STREAM

FEATURES:

• Push & Pop like lists

• Support lookup by ID

• Multiple producers and consumers can
interact with the same queue

• Auto generated ID, no duplicates problem,
pair field/value per sample

FEATURES & EXAMPLES

#GLOBALAZURE

REDIS STREAM

1. Event partitioning: you must create N STREAMS and
a HASH to decide Partition

2. A worker-partition assignment system: you need to
create an algorithm to distribute partitions amongst
workers, ensuring "rebalancing"

3. In-order processing with acknowledgement. Each
worker needs to iterate over each of its partitions,
keeping track of its offsets.

4. Error handling: forward errors to a "dead-letter"
stream and continue processing.

IS A NEW EVENTHUB/KAFKA COMPETITOR?

My main motivation for working on this problem was
the ease-of-use and low cost involved in deploying
and operating Redis. That's why it's attractive vs Kafka.

#GLOBALAZURE

HYPERLOGLOG

• HyperLogLog can tell you an estimate of
the number of unique items it’s been
supplied.

• HyperLogLog is space efficient — the
maximum size of the data structure is
about 12kb.

• HyperLogLog is pretty quick.

• HyperLogLog has a low error rate — 0.81%.

• HyperLogLog is stored, internally, as a
normal string in Redis.

ESTIMATE YOUR DATA

Example: Imagine to list process and count unique Ids, with
8.000.000 Ids (2 bytes each) = 16Gb of Load

Hyperloglog constant size: 1.5 kB

#GLOBALAZURE

HYPERLOGLOG

SIMPLE:

• The unique search terms or unique IPs that
connected today to your web site

• The number of unique guests to your
batchroom area

• The number of unique tourist in a city
during a weekend

• The number of unique cars that travel in a
city during a weekend

• The number of unique devices that send
data

USE CASES

LESS SIMPLE:

• all the unique elements
encountered so far in order to
match the next element with the
set of already seen elements

• increment a counter only if the new
element was never seen before.

• All unique people around you in a
day

• Make a formal verification of
industrial systems telemetry
threshold

#GLOBALAZURE

HYPERLOGLOG

• Sketch is a data structure that can
represent extremely large sets with
constant space complexity.

• That means that you don’t need to
scale up your compute when you
change from your first thousand, to
your first million, to your first
billion transactions!

DATA SKETCHES – WHAT ARE THEY?

16 APRILE 2021 VIRTUAL EVENT

#GLOBALAZURE

REDIS
ADVANCED

#GLOBALAZURE

PIPELINING

Definition

Sending multiple commands to the server in the same
message, separating commands by newline.

The server buffers all the answers in memory and sends all
at once when the pipeline is done.

Use pipeline when

• you need performance

• you have several commands to send to the Redis server

• you don't need the response of a previous command as
input for a subsequent command (because you only get
all responses in the end).

ONE PAGER EVALUTION

CONS

• It gives the response after executing all the pipeline.

• If some command fails, the pipeline continues and an

error is returned at the end

PROS

• It saves round trip amount

• It avoids context switching

NO ROLLBACK!

#GLOBALAZURE

ATOMICITY OF PIPELINING

The agent that executes client commands
is single-threaded. All commands in Redis
are atomic, executed individually.

HIGHLIGHTS

• Execution in order not guaranteed

• Pipeline is not atomic

Pipelines interleaving
Phenomenon

pipelining is non-blocking on the server

#GLOBALAZURE

TRANSACTION

Definition

Mechanism for queuing commands, and later deciding
whether we want to executed all of them (atomically) or
give up and don't execute any command.

Use transaction when

• you need atomic execution of commands

• you don't need intermediate values to compose
subsequent commands

ONE PAGER EVALUTION

CONS

Like pipelining, using transactions we don't have the
ability to use intermediate values for subsequent
commands. We only get the whole list of responses at
the end.

PROS

• If pipelining is used on the library, all the
performance benefits from using pipeline will apply.

• Transactions also provide a "check-and-set" with the
WATCH command.

NO ROLLBACK, AGAIN!

If an error Happens… IT DEPENDS: Semantic
or Syntax error?

#GLOBALAZURE

ATOMICITY OF TRANSACTIONS

• Transactions are atomic. There is no
interleaving of commands inside a
transaction with commands from
outside that transaction.

• Transactions are blocking, in front of
other clients.

Scenario
1. before the transaction, we read a value from

key my-key and store it in our program
2. we start the transaction with MULTI
3. we queue commands inside the transaction,

using the value read from key my-key
4. we EXEC the transaction

WATCH sampleKey
num = GET sampleKey
num = num + 1
MULTI
SET sampleKey $num
EXEC

#GLOBALAZURE

LUA SCRIPTS

Definition

Redis can execute client-provided scripts written in Lua. A
Lua script is loaded on the Redis server and can be later
invoked with parameters. You can also send the whole
script on every invocation, but you should avoid doing this
for performance reasons.

Use transaction when

• you need atomic execution of commands

• you need intermediate values to compose subsequent
commands

• you need intermediate values to conditionally execute
commands

ONE PAGER EVALUTION

CONS

• While there is no limitations in terms of
functionality of Lua scripts, it might be weird to use
it to implement a huge pipeline with atomicity.

PROS

• In a Lua script we can manipulate intermediate
results.

#GLOBALAZURE

ATOMICITY OF LUA SCRIPTS

• Lua scripts are atomic. Likewise
transactions, they are blocking and can
make other clients wait for a long time if
the script is slow.

local key = KEYS[1]

local new = ARGV[1]

local current = redis.call('GET', key)

if (current == false) or (tonumber(new) <

tonumber(current)) then

redis.call('SET', key, new)

return 1

else

return 0

end

#GLOBALAZURE

MY 2 CENTS

• Roundtrip amount matters

• If you don’t care of exceptions: PIPELINE are ok, TRANSACTION are ok.

• If you want a «Atomic Multi-Command» : use Transactions

• If you want to perform, managing WHAT IF inside code: Use LUA

Don't bore me with talk about using multiple programming languages.
Remember SQL STORE PROCEDURE / PL-SQL.

#GLOBALAZURE

DATA EXPIRATION & EVICTION POLICIES

• Data structures in Redis can be marked with
a Time To Live (TTL) set in seconds, after
which they will be removed.

• A series of configurable intelligent “eviction
policies” are available.

• Optional TTL permits the creation of a tiered
hierarchy of memory objects

• In some use cases a least recently used (LRU)
or least frequently used (LFU) metric makes
more sense for eviction.

CACHE POLICIES:
• Least recently used (LRU)
• Time aware least recently used (TLRU)
• Most recently used (MRU)
• Pseudo-LRU (PLRU)
• Random replacement (RR)
• Segmented LRU (SLRU)
• Least-frequently used (LFU)
• Least frequent recently used (LFRU)
• LFU with dynamic aging (LFUDA)
• Low inter-reference recency set (LIRS)

#GLOBALAZURE

KEY SPACE NOTIFICATIONS

Keyspace notifications allow clients to subscribe to two channels in
order to receive events affecting the Redis data set in some
way. Examples:

• All the commands affecting a given key.

• All the keys receiving a specific operation (Set, Delete, etc)

• All the keys expiring in the database.

Two distinct types of events for every operation affecting the Redis
data space:

• Key-space notification: to monitor specific keys

• Key-event notification: to monitor specific events

WHAT HAPPENS ON AZURE?

#GLOBALAZURE

KEYSPACE NOTIFICATIONS

Two types of events can be subscribed using PSUBSCRIBE
command, in this format:

psubscribe __keyspace@<database>__:<mykey>

psubscribe __keyevent@<database>__:<operation>

WHAT HAPPENS ON AZURE?

#GLOBALAZURE

KEY SPACE NOTIFICATIONS
WHAT HAPPENS ON AZURE?

K Keyspace events, published with __keyspace@<db>__ prefix.
E Keyevent events, published with __keyevent@<db>__ prefix.
g Generic commands (non-type specific) like DEL, EXPIRE, RENAME, ...
$ String commands
l List commands
s Set commands
h Hash commands
z Sorted set commands
t Stream commands
x Expired events (events generated every time a key expires)
e Evicted events (events generated when a key is evicted for maxmemory)
m Key miss events (events generated when a key that doesn't exist is accessed)
A Alias for "g$lshztxe", so that the "AKE" string means all the events except "m".

The string AKE can be used to enable every possible event.

16 APRILE 2021 VIRTUAL EVENT

#GLOBALAZURE

DEEP DIVE
ON REDIS V.6 AZURE MODULES

#GLOBALAZURE

REDIS TIME SERIES (IN 2 MINUTES)

• WHAT IS RDTS: time + value = SAMPLE

• Analysis with time-bounded range

• Separate results into time units

• Example: average measure per hour

#GLOBALAZURE

PRIOR TO REDIS TIMESERIES

• SORTED SET: MEMBER + SCORE (Time as Member, Score as Result)

• ZADD mysortedset 123456789ts 1000

• THE PROBLEM WAS… DUPLICATE SCORE during TIME !!!!

• If you put TWO identical values ​​with 2 different timestamps ... it updates the
timestamp.

• Trick: Always append a random to the score to make string unique

• ZADD mysortedset 123456789ts 1000:[random]

THERE WHERE SORTED SETS!

#GLOBALAZURE

REDIS TIMESERIES INTERNALS

• Based on CHUNKS

• 128bit per sample array 64bit (64 timestamp
array + 64 value array)

• It’s a Linked list

• TS CREATE (creates the linked list).

IT’S A LINKED LIST

• Every series can have labels (es: plant: plant-1, sensor: temp-4)

• TTL in seconds is permitted (TS.CREATE myTS LABELS plant plant-1 sensor temp-4 RETENTION 60

TS.ADD myTS * 834
TS.ADD 1555934567 1000

TS.RANGE myTS 1435934567 1555934567 (from to)
TS.RANGE myTS 1435934567 1555934567 AGGREGATION AVG 30

#GLOBALAZURE

REDIS TIMESERIES MAIN FEATURES

• PERFORM AGGREGATIONS:

• MIN, MAX, COUNT, LAST, SUM, AVG

• PERFORM REALTIME DOWNSAMPLING :

• TS.CREATERULE myTS myTS2
AGGREGATION AVG 30

• (every 30 seconds, it creates new
sample)

DOWNSAMPLING.. EVERYWHERE!

OTHER COMMANDS:

• TS.INCRBY / DECRBY (variation history)

• TS.GET it takes most recent

• TS.ALTER change label metadata

• TS.MRANGE & TS.MGET to query more series

#GLOBALAZURE

REDIS BLOOM (IN 2 MINUTES)

KEY ASPECTS:

• LOW LATENCY

• PROBABILISTIC DATA STRUCTURE

• CONSTANT MEMORY ALLOCATION

• LOW ERROR RATE

A MODULE FOR DATA SKETCHES

The RedisBloom module provides four data structures:

• Bloom filter: A data structure designed to rapidly
determine if an element is present in a set in a highly
memory-efficient manner.

• Cuckoo filter: An alternative to Bloom filters with
additional support for deletion of elements from a set.

• Count-Min Sketch: Calculates frequency of events in
data samples.

• Top-K: A deterministic algorithm that approximates
frequencies for the top k items.

#GLOBALAZURE

REDIS BLOOM

• must be created with a foreknowledge of
how many entries they contain.

• The bpe number needs to be fixed, and
likewise, the width of the bit array is also
fixed.

• They may be stacked to accommodate
more elements

• When creating a Bloom filter - even a
scalable one, it’s important to have a good
idea of how many items it is expected to
contain.

BF.ADD bloom kirk

BF.EXISTS bloom kirk

BF.MADD bloom elem1 elem2 elem3

BF.MEXISTS bloom elem1 elem2 elem3

#GLOBALAZURE

REDIS SEARCH (IN 2 MINUTES)

• Unified Search and analytics: Query data, content, and documents using a
variety of indexing, querying, and full-text search capabilities.

• Horizontally scalable: Scale out and partition indexes over several shards and
nodes for greater speed and memory capacity.

• Enterprise-grade reliability: Enjoy continued operations in any scenario with
five-nines availability and Active-Active failover.

#GLOBALAZURE

REDIS SEARCH 2.0

Indexing and Querying

• create indexes on Hashes

• incremental indexing approach (more
rapid)

• perform aggregations, filter by properties,
numeric ranges

Full-Text and Fuzzy Search

• full-text indexing and stemming-based
query expansion in multiple languages

• It provides a rich query language that can
perform text searches

• It can implement auto-complete
suggestions using ‘fuzzy’ searches

#GLOBALAZURE

REDIS SEARCH 2.0

Create Index with 4 secondary indexes (title, release, rating, genre)

FT.CREATE idx:movie ON hash PREFIX 1 "movie:" SCHEMA title TEXT SORTABLE release_year
NUMERIC SORTABLE rating NUMERIC SORTABLE genre TAG SORTABLE

A QUICK EXAMPLE

Full-text search queries
FT.SEARCH idx:movie "war" RETURN 3 title release_year rating

1) (integer) 1
2) "movie:11002"
3) 1) "title"

2) "Star Wars: Episode V - The Empire Strikes Back"
3) "release_year"
4) "1980"
5) "rating"
6) "8.7"

Search in specific fields:
> FT.SEARCH idx:movie "@title:war" RETURN 3 title release_year rating

Prefix matches
FT.SEARCH idx:movie "emp*" RETURN 3 title release_year rating

Fuzzy search
> FT.SEARCH idx:movie "%gdfather%" RETURN 3 title release_year rating

Union
> FT.SEARCH idx:movie "war | %gdfather% " RETURN 3 title release_year rating

16 APRILE 2021 VIRTUAL EVENT

#GLOBALAZURE

Q&A

16 APRILE 2021 VIRTUAL EVENT

#GLOBALAZURE

Riccardo Zamana
IoT and Telemetry passionate
Proud Azure Fellow

THANK YOU

